Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(1): e25585, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289190

RESUMO

Reproductive processes are regulated by a variety of neuropeptides in vertebrates and invertebrates. In starfish (phylum Echinodermata), relaxin-like gonad-stimulating peptide triggers oocyte maturation and spawning. However, little is known about other neuropeptides as potential regulators of reproduction in starfish. To address this issue, here, we used histology and immunohistochemistry to analyze the reproductive system of the starfish Asterias rubens at four stages of the seasonal reproductive cycle in male and female animals, investigating the expression of eight neuropeptides: the corticotropin-releasing hormone-type neuropeptide ArCRH, the calcitonin-type neuropeptide ArCT, the pedal peptide-type neuropeptides ArPPLN1b and ArPPLN2h, the vasopressin/ocytocin-type neuropeptide asterotocin, the gonadotropin-releasing hormone-type neuropeptide ArGnRH, and the somatostatin/allatostatin-C-type neuropeptides ArSS1 and ArSS2. The expression of five neuropeptides, ArCRH, ArCT, ArPPLN1b, ArPPLN2h, and asterotocin, was detected in the gonoducts and/or gonads. For example, extensive ArPPLN2h expression was revealed in the coelomic epithelial layer of the gonads throughout the seasonal reproductive cycle in both males and females. However, seasonal and/or sexual differences in the patterns of neuropeptide expression were also observed. Informed by these findings, the in vitro pharmacological effects of neuropeptides on gonad preparations from male and female starfish were investigated. This revealed that ArSS1 causes gonadal contraction and that ArPPLN2h causes gonadal relaxation, with both neuropeptides being more effective on ovaries than testes. Collectively, these findings indicate that multiple neuropeptide signaling systems are involved in the regulation of reproductive function in starfish, with some neuropeptides exerting excitatory or inhibitory effects on gonad contractility that may be physiologically relevant when gametes are expelled during spawning.


Assuntos
Asterias , Neuropeptídeos , Feminino , Masculino , Animais , Estrelas-do-Mar , Genitália , Equinodermos
3.
J Comp Neurol ; 531(13): 1299-1316, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37212624

RESUMO

Oocyte maturation and gamete release (spawning) in starfish are triggered by relaxin-like gonad-stimulating peptide (RGP), a neuropeptide that was first isolated from the radial nerve cords of these animals. Hitherto, it has generally been assumed that the radial nerve cords are the source of RGP that triggers spawning physiologically. To investigate other sources of RGP, here we report the first comprehensive anatomical analysis of its expression, using both in situ hybridization and immunohistochemistry to map RGP precursor transcripts and RGP, respectively, in the starfish Asterias rubens. Cells expressing RGP precursor transcripts were revealed in the ectoneural epithelium of the radial nerve cords and circumoral nerve ring, arm tips, tube feet, cardiac stomach, pyloric stomach, and, most notably, gonoducts. Using specific antibodies to A. rubens RGP, immunostaining was revealed in cells and/or fibers in the ectoneural region of the radial nerve cords and circumoral nerve ring, tube feet, terminal tentacle and other arm tip-associated structures, body wall, peristomial membrane, esophagus, cardiac stomach, pyloric stomach, pyloric caeca, and gonoducts. Our discovery that RGP is expressed in the gonoducts of A. rubens proximal to its gonadotropic site of action in the gonads is important because it provides a new perspective on how RGP may act as a gonadotropin in starfish. Thus, we hypothesize that it is the release of RGP from the gonoducts that triggers gamete maturation and spawning in starfish, while RGP produced in other parts of the body may regulate other physiological/behavioral processes.


Assuntos
Asterias , Neuropeptídeos , Relaxina , Animais , Estrelas-do-Mar/metabolismo , Relaxina/química , Relaxina/metabolismo , Gônadas/metabolismo , Asterias/metabolismo , Neuropeptídeos/metabolismo
4.
Sci Rep ; 13(1): 3349, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849815

RESUMO

The nervous system of the Asteroidea (starfish or seastar) consists of radial nerve cords (RNCs) that interconnect with a ring nerve. Despite its relative simplicity, it facilitates the movement of multiple arms and numerous tube feet, as well as regeneration of damaged limbs. Here, we investigated the RNC ultrastructure and its molecular components within the of Pacific crown-of-thorns starfish (COTS; Acanthaster sp.), a well-known coral predator that in high-density outbreaks has major ecological impacts on coral reefs. We describe the presence of an array of unique small bulbous bulbs (40-100 µm diameter) that project from the ectoneural region of the adult RNC. Each comprise large secretory-like cells and prominent cilia. In contrast, juvenile COTS and its congener Acanthaster brevispinus lack these features, both of which are non-corallivorous. Proteomic analysis of the RNC (and isolated neural bulbs) provides the first comprehensive echinoderm protein database for neural tissue, including numerous secreted proteins associated with signalling, transport and defence. The neural bulbs contained several neuropeptides (e.g., bombyxin-type, starfish myorelaxant peptide, secretogranin 7B2-like, Ap15a-like, and ApNp35) and Deleted in Malignant Brain Tumor 1-like proteins. In summary, this study provides a new insight into the novel traits of COTS, a major pest on coral reefs, and a proteomics resource that can be used to develop (bio)control strategies and understand molecular mechanisms of regeneration.


Assuntos
Distrofias de Cones e Bastonetes , Tecido Nervoso , Animais , Nervo Radial , Proteômica , Estrelas-do-Mar , Equinodermos
5.
Cell Tissue Res ; 391(3): 441-456, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36653662

RESUMO

Neuropeptides derived from larger precursor proteins are secreted as signalling molecules by neurons and regulate diverse physiological and behavioural processes in animals. Recently, we reported the discovery of ArCRZ (HNTFTMGGQNRWKAG-NH2) and ArLQ (EEKTRFPKFMRW-NH2)-novel neuropeptides in the starfish Asterias rubens that are orthologs of arthropod corazonins and molluscan luqins, respectively. However, our efforts to generate antibodies to ArCRZ and ArLQ have been unsuccessful, precluding immunohistochemical analysis of their expression. Here, we investigated an alternative experimental approach for neuropeptide immunohistochemistry by generating antibodies to peptides corresponding to the C-terminal region of the precursor proteins. As proof of principle, we generated antibodies to the C-terminal region of the precursor of the vasopressin/oxytocin-type neuropeptide asterotocin and show that these reveal immunostaining in A. rubens that is very similar to that observed with asterotocin antibodies. Furthermore, antibodies to the C-terminal region of the ArCRZ precursor (ArCRZP) and the ArLQ precursor (ArLQP) produced patterns of immunostaining consistent, respectively, with the distribution of ArCRZP and ArLQP transcripts revealed by mRNA in situ hybridisation. Detailed immunohistochemical analysis revealed widespread expression of ArCRZP and ArLQP in A. rubens, including the central nervous system, digestive system and the body wall and its associated appendages (e.g. tube feet), providing a neuroanatomical framework for investigation and interpretation of the pharmacological actions of ArCRZ and ArLQ in A. rubens. Furthermore, our findings provide a basis for use of antibodies to the C-terminal region of neuropeptide precursor proteins in other species where the production of antibodies to the bioactive neuropeptides is unsuccessful.


Assuntos
Asterias , Neuropeptídeos , Animais , Estrelas-do-Mar , Ocitocina/metabolismo , Sequência de Aminoácidos , Neuropeptídeos/metabolismo , Vasopressinas/metabolismo
6.
Neuroendocrinology ; 113(2): 231-250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-33965952

RESUMO

BACKGROUND: Corticotropin-releasing hormone (CRH) mediates physiological responses to stressors in mammals by triggering pituitary secretion of adrenocorticotropic hormone, which stimulates adrenal release of cortisol. CRH belongs to a family of related neuropeptides that include sauvagine, urotensin-I, and urocortins in vertebrates and the diuretic hormone DH44 in insects, indicating that the evolutionary origin of this neuropeptide family can be traced to the common ancestor of the Bilateria. However, little is known about CRH-type neuropeptides in deuterostome invertebrates. METHODS: Here, we used mass spectrometry, mRNA in situ hybridization, and immunohistochemistry to investigate the structure and expression of a CRH-type neuropeptide (ArCRH) in the starfish Asterias rubens (phylum Echinodermata). RESULTS: ArCRH is a 40-residue peptide with N-terminal pyroglutamylation and C-terminal amidation, and it has a widespread pattern of expression in A. rubens. In the central nervous system comprising the circumoral nerve ring and 5 radial nerve cords, ArCRH-expressing cells and fibres were revealed in both the ectoneural region and the hyponeural region, which contains the cell bodies of motoneurons. Accordingly, ArCRH immunoreactivity was detected in innervation of the ampulla and podium of locomotory organs (tube feet), and ArCRH is the first neuropeptide to be identified as a marker for nerve fibres located in the muscle layer of these organs. ArCRH immunoreactivity was also revealed in protractile organs that mediate gas exchange (papulae), the apical muscle, and the digestive system. CONCLUSIONS: Our findings provide the first insights into CRH-type neuropeptide expression and function in the unique context of the pentaradially symmetrical body plan of an echinoderm.


Assuntos
Hormônio Liberador da Corticotropina , Neuropeptídeos , Animais , Sequência de Aminoácidos , Neuropeptídeos/metabolismo , Equinodermos/metabolismo , Estrelas-do-Mar/química , Estrelas-do-Mar/metabolismo , Mamíferos/metabolismo
7.
Front Neurosci ; 16: 1006594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583101

RESUMO

Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria. However, our knowledge of neuropeptide signaling in echinoderms is largely based on bioinformatic and experimental analysis of eleutherozoans-Asterozoa (starfish and brittle stars) and Echinozoa (sea urchins and sea cucumbers). Little is known about neuropeptide signaling in crinoids (feather stars and sea lilies), which are a sister clade to the Eleutherozoa. Therefore, we have analyzed transcriptome/genome sequence data from three feather star species, Anneissia japonica, Antedon mediterranea, and Florometra serratissima, to produce the first comprehensive identification of neuropeptide precursors in crinoids. These include representatives of bilaterian neuropeptide precursor families and several predicted crinoid neuropeptide precursors. Using A. mediterranea as an experimental model, we have investigated the expression of selected neuropeptides in larvae (doliolaria), post-metamorphic pentacrinoids and adults, providing new insights into the cellular architecture of crinoid nervous systems. Thus, using mRNA in situ hybridization F-type SALMFamide precursor transcripts were revealed in a previously undescribed population of peptidergic cells located dorso-laterally in doliolaria. Furthermore, using immunohistochemistry a calcitonin-type neuropeptide was revealed in the aboral nerve center, circumoral nerve ring and oral tube feet in pentacrinoids and in the ectoneural and entoneural compartments of the nervous system in adults. Moreover, functional analysis of a vasopressin/oxytocin-type neuropeptide (crinotocin), which is expressed in the brachial nerve of the arms in A. mediterranea, revealed that this peptide causes a dose-dependent change in the mechanical behavior of arm preparations in vitro-the first reported biological action of a neuropeptide in a crinoid. In conclusion, our findings provide new perspectives on neuropeptide signaling in echinoderms and the foundations for further exploration of neuropeptide expression/function in crinoids as a sister clade to eleutherozoan echinoderms.

8.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145030

RESUMO

Somatostatin (SS) and allatostatin-C (ASTC) are inhibitory neuropeptides in chordates and protostomes, respectively, which hitherto were identified as orthologs. However, echinoderms have two SS/ASTC-type neuropeptides (SS1 and SS2), and here, our analysis of sequence data indicates that SS1 is an ortholog of ASTC and SS2 is an ortholog of SS. The occurrence of both SS-type and ASTC-type neuropeptides in echinoderms provides a unique context to compare their physiological roles. Investigation of the expression and actions of the ASTC-type neuropeptide ArSS1 in the starfish Asterias rubens revealed that it causes muscle contraction (myoexcitation), contrasting with myoinhibitory effects of the SS-type neuropeptide ArSS2. Our findings suggest that SS-type and ASTC-type neuropeptides are paralogous and originated by gene duplication in a common ancestor of the Bilateria, with only one type being retained in chordates (SS) and protostomes (ASTC) but with both types being retained in echinoderms. Loss of ASTC-type and SS-type neuropeptides in chordates and protostomes, respectively, may have been due to their functional redundancy as inhibitory regulators of physiological processes. Conversely, the retention of both neuropeptide types in echinoderms may be a consequence of the evolution of a myoexcitatory role for ASTC-type neuropeptides mediated by as yet unknown signaling mechanisms.


Assuntos
Músculos/metabolismo , Neuropeptídeos/metabolismo , Estrelas-do-Mar/metabolismo , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica , Estrelas-do-Mar/genética
9.
Elife ; 102021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34488941

RESUMO

Sulfakinin (SK)/cholecystokinin (CCK)-type neuropeptides regulate feeding and digestion in protostomes (e.g. insects) and chordates. Here, we characterised SK/CCK-type signalling for the first time in a non-chordate deuterostome - the starfish Asterias rubens (phylum Echinodermata). In this species, two neuropeptides (ArSK/CCK1, ArSK/CCK2) derived from the precursor protein ArSK/CCKP act as ligands for an SK/CCK-type receptor (ArSK/CCKR) and these peptides/proteins are expressed in the nervous system, digestive system, tube feet, and body wall. Furthermore, ArSK/CCK1 and ArSK/CCK2 cause dose-dependent contraction of cardiac stomach, tube foot, and apical muscle preparations in vitro, and injection of these neuropeptides in vivo triggers cardiac stomach retraction and inhibition of the onset of feeding in A. rubens. Thus, an evolutionarily ancient role of SK/CCK-type neuropeptides as inhibitory regulators of feeding-related processes in the Bilateria has been conserved in the unusual and unique context of the extra-oral feeding behaviour and pentaradial body plan of an echinoderm.


Assuntos
Colecistocinina/metabolismo , Colecistocinina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Asterias/genética , Asterias/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Linhagem Celular , Equinodermos , Sistema Nervoso/metabolismo , Neuropeptídeos/classificação , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Filogenia , Estrelas-do-Mar
10.
Open Biol ; 10(9): 200172, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898470

RESUMO

Somatostatin (SS) and allatostatin-C (ASTC) are structurally and evolutionarily related neuropeptides that act as inhibitory regulators of physiological processes in mammals and insects, respectively. Here, we report the first molecular and functional characterization of SS/ASTC-type signalling in a deuterostome invertebrate-the starfish Asterias rubens (phylum Echinodermata). Two SS/ASTC-type precursors were identified in A. rubens (ArSSP1 and ArSSP2) and the structures of neuropeptides derived from these proteins (ArSS1 and ArSS2) were analysed using mass spectrometry. Pharmacological characterization of three cloned A. rubens SS/ASTC-type receptors (ArSSR1-3) revealed that ArSS2, but not ArSS1, acts as a ligand for all three receptors. Analysis of ArSS2 expression in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed stained cells/fibres in the central nervous system, the digestive system (e.g. cardiac stomach) and the body wall and its appendages (e.g. tube feet). Furthermore, in vitro pharmacological tests revealed that ArSS2 causes dose-dependent relaxation of tube foot and cardiac stomach preparations, while injection of ArSS2 in vivo causes partial eversion of the cardiac stomach. Our findings provide new insights into the molecular evolution of SS/ASTC-type signalling in the animal kingdom and reveal an ancient role of SS-type neuropeptides as inhibitory regulators of muscle contractility.


Assuntos
Equinodermos/metabolismo , Transdução de Sinais , Somatostatina/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Equinodermos/classificação , Equinodermos/genética , Evolução Molecular , Expressão Gênica , Ordem dos Genes , Imuno-Histoquímica , Hibridização In Situ , Relaxamento Muscular/efeitos dos fármacos , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Filogenia , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Somatostatina/química , Somatostatina/genética , Estrelas-do-Mar/classificação , Estrelas-do-Mar/genética , Estrelas-do-Mar/metabolismo
11.
BMC Biol ; 17(1): 60, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31362737

RESUMO

BACKGROUND: Vasopressin/oxytocin (VP/OT)-type neuropeptides are well known for their roles as regulators of diuresis, reproductive physiology and social behaviour. However, our knowledge of their functions is largely based on findings from studies on vertebrates and selected protostomian invertebrates. Little is known about the roles of VP/OT-type neuropeptides in deuterostomian invertebrates, which are more closely related to vertebrates than protostomes. RESULTS: Here, we have identified and functionally characterised a VP/OT-type signalling system comprising the neuropeptide asterotocin and its cognate G-protein coupled receptor in the starfish (sea star) Asterias rubens, a deuterostomian invertebrate belonging to the phylum Echinodermata. Analysis of the distribution of asterotocin and the asterotocin receptor in A. rubens using mRNA in situ hybridisation and immunohistochemistry revealed expression in the central nervous system (radial nerve cords and circumoral nerve ring), the digestive system (including the cardiac stomach) and the body wall and associated appendages. Informed by the anatomy of asterotocin signalling, in vitro pharmacological experiments revealed that asterotocin acts as a muscle relaxant in starfish, contrasting with the myotropic actions of VP/OT-type neuropeptides in vertebrates. Furthermore, in vivo injection of asterotocin had a striking effect on starfish behaviour-triggering fictive feeding where eversion of the cardiac stomach and changes in body posture resemble the unusual extra-oral feeding behaviour of starfish. CONCLUSIONS: We provide a comprehensive characterisation of VP/OT-type signalling in an echinoderm, including a detailed anatomical analysis of the expression of both the VP/OT-type neuropeptide asterotocin and its cognate receptor. Our discovery that asterotocin triggers fictive feeding in starfish provides important new evidence of an evolutionarily ancient role of VP/OT-type neuropeptides as regulators of feeding in animals.


Assuntos
Asterias/genética , Neuropeptídeos/genética , Sequência de Aminoácidos , Animais , Asterias/fisiologia , Comportamento Alimentar/fisiologia , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Filogenia , Alinhamento de Sequência
12.
J Insect Physiol ; 116: 57-69, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31039373

RESUMO

Neural development depends on the controlled proliferation and differentiation of neural precursors. In holometabolous insects, these processes must be coordinated during larval and pupal development. Recently, protein arginine methylation has come into focus as an important mechanism of controlling neural stem cell proliferation and differentiation in mammals. Whether a similar mechanism is at work in insects is unknown. We investigated this possibility by determining the expression pattern of three protein arginine methyltransferase mRNAs (PRMT1, 4 and 5) in the developing brain of bumblebees by in situ hybridisation. We detected expression in neural precursors and neurons in functionally important brain areas throughout development. We found markedly higher expression of PRMT1, but not PRMT4 and PRMT5, in regions of mushroom bodies containing dividing cells during pupal stages at the time of active neurogenesis within this brain area. At later stages of development, PRMT1 expression levels were found to be uniform and did not correlate with actively dividing cells. Our study suggests a role for PRMT1 in regulating neural precursor divisions in the mushroom bodies of bumblebees during the period of neurogenesis.


Assuntos
Abelhas/genética , Expressão Gênica , Proteínas de Insetos/genética , Corpos Pedunculados/crescimento & desenvolvimento , Neurogênese/fisiologia , Proteína-Arginina N-Metiltransferases/genética , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/metabolismo , Encéfalo/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo
13.
Artigo em Inglês | MEDLINE | ID: mdl-30283399

RESUMO

Neuropeptides in deuterostomian invertebrates that have an Asn-Gly motif (NG peptides) have been identified as orthologs of vertebrate neuropeptide-S (NPS)-type peptides and protostomian crustacean cardioactive peptide (CCAP)-type neuropeptides. To obtain new insights into the physiological roles of NG peptides in deuterostomian invertebrates, here we have characterized the NG peptide signaling system in an echinoderm-the starfish Asterias rubens. The neuropeptide NGFFYamide was identified as the ligand for an A. rubens NPS/CCAP-type receptor, providing further confirmation that NG peptides are orthologs of NPS/CCAP-type neuropeptides. Using mRNA in situ hybridization, cells expressing the NGFFYamide precursor transcript were revealed in the radial nerve cords, circumoral nerve ring, coelomic epithelium, apical muscle, body wall, stomach, and tube feet of A. rubens, indicating that NGFFYamide may have a variety of physiological roles in starfish. One of the most remarkable aspects of starfish biology is their feeding behavior, where the stomach is everted out of the mouth over the soft tissue of prey. Previously, we reported that NGFFYamide triggers retraction of the everted stomach in A. rubens and here we show that in vivo injection of NGFFYamide causes a significant delay in the onset of feeding on prey. To investigate roles in regulating other aspects of starfish physiology, we examined the in vitro effects of NGFFYamide and found that it causes relaxation of acetylcholine-contracted apical muscle preparations and induction of tonic and phasic contraction of tube feet. Furthermore, analysis of the effects of in vivo injection of NGFFYamide on starfish locomotor activity revealed that it causes a significant reduction in mean velocity and distance traveled. Interestingly, experimental studies on mammals have revealed that NPS is an anxiolytic that suppresses appetite and induces hyperactivity in mammals. Our characterization of the actions of NGFFYamide in starfish indicates that NPS/NG peptide/CCAP-type signaling is an evolutionarily ancient regulator of feeding and locomotion.

14.
Front Neurosci ; 12: 382, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29937709

RESUMO

Calcitonin (CT) is a peptide hormone released by the thyroid gland that regulates blood Ca2+ levels in mammals. The CT gene is alternatively spliced, with one transcript encoding CT and another transcript encoding the CT-like neuropeptide calcitonin-gene related peptide (α-CGRP), which is a powerful vasodilator. Other CT-related peptides in vertebrates include adrenomedullin, amylin, and intermedin, which also act as smooth muscle relaxants. The evolutionary origin of CT-type peptides has been traced to the bilaterian common ancestor of protostomes and deuterostomes and a CT-like peptide (DH31) has been identified as a diuretic hormone in some insect species. However, little is known about the physiological roles of CT-type peptides in other invertebrates. Here we characterized a CT-type neuropeptide in a deuterostomian invertebrate-the starfish Asterias rubens (Phylum Echinodermata). A CT-type precursor cDNA (ArCTP) was sequenced and the predicted structure of the peptide (ArCT) derived from ArCTP was confirmed using mass spectrometry. The distribution of ArCTP mRNA and the ArCT peptide was investigated using in situ hybridization and immunohistochemistry, respectively, revealing stained cells/processes in the nervous system, digestive system, and muscular organs, including the apical muscle and tube feet. Investigation of the effects of synthetic ArCT on in vitro preparations of the apical muscle and tube feet revealed that it acts as a relaxant, causing dose-dependent reversal of acetylcholine-induced contraction. Furthermore, a muscle relaxant present in whole-animal extracts of another starfish species, Patiria pectinifera, was identified as an ortholog of ArCT and named PpCT. Consistent with the expression pattern of ArCTP in A. rubens, RT-qPCR revealed that in P. pectinifera the PpCT precursor transcript is more abundant in the radial nerve cords than in other tissues/organs analyzed. In conclusion, our findings indicate that the physiological action of CT-related peptides as muscle relaxants in vertebrates may reflect an evolutionarily ancient role of CT-type neuropeptides that can be traced back to the common ancestor of deuterostomes.

15.
J Comp Neurol ; 526(5): 858-876, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218721

RESUMO

Molluscan pedal peptides (PPs) and arthropod orcokinins (OKs) are prototypes of a family of neuropeptides that have been identified in several phyla. Recently, starfish myorelaxant peptide (SMP) was identified as a PP/OK-type neuropeptide in the starfish Patiria pectinifera (phylum Echinodermata). Furthermore, analysis of transcriptome sequence data from the starfish Asterias rubens revealed two PP/OK-type precursors: an SMP-type precursor (A. rubens PP-like neuropeptide precursor 1; ArPPLNP1) and a second precursor (ArPPLNP2). We reported previously a detailed analysis of ArPPLNP1 expression in A. rubens and here we report the first functional characterization ArPPLNP2-derived neuropeptides. Sequencing of a cDNA encoding ArPPLNP2 revealed that it comprises eleven related neuropeptides (ArPPLN2a-k), the structures of several of which were confirmed using mass spectrometry. Analysis of the expression of ArPPLNP2 and neuropeptides derived from this precursor using mRNA in situ hybridization and immunohistochemistry revealed a widespread distribution, including expression in radial nerve cords, circumoral nerve ring, digestive system, tube feet and innervation of interossicular muscles. In vitro pharmacology revealed that the ArPPLNP2-derived neuropeptide ArPPLN2h has no effect on the contractility of tube feet or the body wall-associated apical muscle, contrasting with the relaxing effect of ArPPLN1b (ArSMP) on these preparations. ArPPLN2h does, however, cause dose-dependent relaxation of cardiac stomach preparations, with greater potency/efficacy than ArPPLN1b and with similar potency/efficacy to the SALMFamide neuropeptide S2. In conclusion, there are similarities in the expression patterns of ArPPLNP1 and ArPPLNP2 but our data also indicate specialization in the roles of neuropeptides derived from these two PP/OK-type precursors in starfish.


Assuntos
Asterias/anatomia & histologia , Asterias/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Espectrometria de Massas , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , RNA Mensageiro/metabolismo , Nervo Radial/efeitos dos fármacos , Nervo Radial/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma
16.
Artigo em Inglês | MEDLINE | ID: mdl-29033898

RESUMO

Homologs of the vertebrate neuropeptide gonadotropin-releasing hormone (GnRH) have been identified in invertebrates, including the insect neuropeptide corazonin (CRZ). Recently, we reported the discovery of GnRH-type and CRZ-type signaling systems in an echinoderm, the starfish Asterias rubens, demonstrating that the evolutionary origin of paralogous GnRH-type and CRZ-type neuropeptides can be traced back to the common ancestor of protostomes and deuterostomes. Here, we have investigated the physiological roles of the GnRH-type (ArGnRH) and the CRZ-type (ArCRZ) neuropeptides in A. rubens, using mRNA in situ hybridization, immunohistochemistry and in vitro pharmacology. ArGnRH precursor (ArGnRHP)-expressing cells and ArGnRH-immunoreactive cells and/or processes are present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach and pyloric stomach), body wall-associated muscle (apical muscle), and appendages (tube feet, terminal tentacle). The general distribution of ArCRZ precursor (ArCRZP)-expressing cells is similar to that of ArGnRHP, but with specific local differences. For example, cells expressing ArGnRHP are present in both the ectoneural and hyponeural regions of the radial nerve cords and circumoral nerve ring, whereas cells expressing ArCRZP were only observed in the ectoneural region. In vitro pharmacological experiments revealed that both ArGnRH and ArCRZ cause contraction of cardiac stomach, apical muscle, and tube foot preparations. However, ArGnRH was more potent/effective than ArCRZ as a contractant of the cardiac stomach, whereas ArCRZ was more potent/effective than ArGnRH as a contractant of the apical muscle. These findings demonstrate that both ArGnRH and ArCRZ are myoexcitatory neuropeptides in starfish, but differences in their expression patterns and pharmacological activities are indicative of distinct physiological roles. This is the first study to investigate the physiological roles of both GnRH-type and CRZ-type neuropeptides in a deuterostome, providing new insights into the evolution and comparative physiology of these paralogous neuropeptide signaling systems in the Bilateria.

17.
Proc Biol Sci ; 284(1864)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28978727

RESUMO

Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee (Bombus terrestris) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory.


Assuntos
Abelhas/fisiologia , Percepção de Cores , Plasticidade Neuronal , Animais , Encéfalo , Aprendizagem por Discriminação , Aprendizagem , Memória
18.
J Comp Neurol ; 525(18): 3890-3917, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28880392

RESUMO

Pedal peptide (PP) and orcokinin (OK) are related neuropeptides that were discovered in protostomian invertebrates (mollusks, arthropods). However, analysis of genome/transcriptome sequence data has revealed that PP/OK-type neuropeptides also occur in a deuterostomian phylum-the echinoderms. Furthermore, a PP/OK-type neuropeptide (starfish myorelaxant peptide, SMP) was recently identified as a muscle relaxant in the starfish Patiria pectinifera. Here mass spectrometry was used to identify five neuropeptides (ArPPLN1a-e) derived from the SMP precursor (PP-like neuropeptide precursor 1; ArPPLNP1) in the starfish Asterias rubens. Analysis of the expression of ArPPLNP1 and neuropeptides derived from this precursor in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed a widespread pattern of expression, with labeled cells and/or processes present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach) and body wall-associated muscles (e.g., apical muscle) and appendages (e.g., tube feet and papulae). Furthermore, our data provide the first evidence that neuropeptides are present in the lateral motor nerves and in nerve processes innervating interossicular muscles. In vitro pharmacological tests with SMP (ArPPLN1b) revealed that it causes dose-dependent relaxation of apical muscle, tube foot and cardiac stomach preparations from A. rubens. Collectively, these anatomical and pharmacological data indicate that neuropeptides derived from ArPPLNP1 act as inhibitory neuromuscular transmitters in starfish, which contrasts with the myoexcitatory actions of PP/OK-type neuropeptides in protostomian invertebrates. Thus, the divergence of deuterostomes and protostomes may have been accompanied by an inhibitory-excitatory transition in the roles of PP/OK-type neuropeptides as regulators of muscle activity.


Assuntos
Asterias/anatomia & histologia , Asterias/metabolismo , Fármacos Neuromusculares/farmacologia , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Órgãos dos Sentidos/anatomia & histologia , Animais , Sistema Digestório/metabolismo , Espectrometria de Massas , Relaxamento Muscular/efeitos dos fármacos , Oligodesoxirribonucleotídeos Antissenso/farmacologia , RNA Mensageiro/metabolismo , Órgãos dos Sentidos/efeitos dos fármacos , Órgãos dos Sentidos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
19.
J Anat ; 231(3): 325-341, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28714118

RESUMO

The body wall of starfish is composed of magnesium calcite ossicles connected by collagenous tissue and muscles and it exhibits remarkable variability in stiffness, which is attributed to the mechanical mutability of the collagenous component. Using the common European starfish Asterias rubens as an experimental animal, here we have employed a variety of techniques to gain new insights into the structure of the starfish body wall. The structure and organisation of muscular and collagenous components of the body wall were analysed using trichrome staining. The muscle system comprises interossicular muscles as well as muscle strands that connect ossicles with the circular muscle layer of the coelomic lining. The collagenous tissue surrounding the ossicle network contains collagen fibres that form loop-shaped straps that wrap around calcite struts near to the surface of ossicles. The 3D architecture of the calcareous endoskeleton was visualised for the first time using X-ray microtomography, revealing the shapes and interactions of different ossicle types. Furthermore, analysis of the anatomical organisation of the ossicles indicates how changes in body shape may be achieved by local contraction/relaxation of interossicular muscles. Scanning synchrotron small-angle X-ray diffraction (SAXD) scans of the starfish aboral body wall and ambulacrum were used to study the collagenous tissue component at the fibrillar level. Collagen fibrils in aboral body wall were found to exhibit variable degrees of alignment, with high levels of alignment probably corresponding to regions where collagenous tissue is under tension. Collagen fibrils in the ambulacrum had a uniformly low degree of orientation, attributed to macrocrimp of the fibrils and the presence of slanted as well as horizontal fibrils connecting antimeric ambulacral ossicles. Body wall collagen fibril D-period lengths were similar to previously reported mammalian D-periods, but were significantly different between the aboral and ambulacral samples. The overlap/D-period length ratio within fibrils was higher than reported for mammalian tissues. Collectively, the data reported here provide new insights into the anatomy of the body wall in A. rubens and a foundation for further studies investigating the structural basis of the mechanical properties of echinoderm body wall tissue composites.


Assuntos
Asterias/anatomia & histologia , Animais , Colágeno/análise , Microtomografia por Raio-X
20.
J Comp Neurol ; 525(7): 1599-1617, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27806429

RESUMO

Gamete maturation and spawning in starfish is triggered by a gonad-stimulating substance (GSS), which is present in extracts of the radial nerve cords. Purification of GSS from the starfish Patiria pectinifera identified GSS as a relaxin-like polypeptide, which is now known as relaxin-like gonad-stimulating peptide (RGP). Cells expressing RGP in the radial nerve cord of P. pectinifera have been visualized, but the presence of RGP-expressing cells in other parts of the starfish body has not been investigated. Here we addressed this issue in the starfish Asterias rubens. An A. rubens RGP (AruRGP) precursor cDNA was sequenced and the A chain and B chain that form AruRGP were detected in A. rubens radial nerve cord extracts using mass spectrometry. Comparison of the bioactivity of AruRGP and P. pectinifera RGP (PpeRGP) revealed that both polypeptides induce oocyte maturation and ovulation in A. rubens ovarian fragments, but AruRGP is more potent than PpeRGP. Analysis of the expression of AruRGP in A. rubens using mRNA in situ hybridization revealed cells expressing RGP in the radial nerve cords, circumoral nerve ring, and tube feet. Furthermore, a band of RGP-expressing cells was identified in the body wall epithelium lining the cavity that surrounds the sensory terminal tentacle and optic cushion at the tips of the arms. Discovery of these RGP-expressing cells closely associated with sensory organs in the arm tips is an important finding because these cells are candidate physiological mediators for hormonal control of starfish spawning in response to environmental cues. J. Comp. Neurol. 525:1599-1617, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Hormônios de Invertebrado/metabolismo , Relaxina/metabolismo , Comportamento Sexual Animal/fisiologia , Estrelas-do-Mar/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Hibridização In Situ , Espectrometria de Massas , Peptídeos/metabolismo , Filogenia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...